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Abstract: Slot filling is a crucial component in task-oriented dialog systems that is used to parse
(user) utterances into semantic concepts called slots. An ontology is defined by the collection of slots
and the values that each slot can take. The most widely used practice of treating slot filling as a
sequence labeling task suffers from two main drawbacks. First, the ontology is usually pre-defined
and fixed and therefore is not able to detect new labels for unseen slots. Second, the one-hot encoding
of slot labels ignores the correlations between slots with similar semantics, which makes it difficult
to share knowledge learned across different domains. To address these problems, we propose a
new model called elastic conditional random field (eCRF), where each slot is represented by the
embedding of its natural language description and modeled by a CRF layer. New slot values can be
detected by eCRF whenever a language description is available for the slot. In our experiment, we
show that eCRFs outperform existing models in both in-domain and cross-domain tasks, especially
in predicting unseen slots and values.

Keywords: open ontology; slot filling; conditional random fields; dialog systems

1. Introduction

Slot filling [1,2] is a crucial component in task-oriented dialog systems and parses
(user) utterances into semantic concepts in terms of a set of named entities called slots.
The example in Figure 1 contains the slots time and movie. In parsing, some span in the
utterance is identified as the slot value for some slot; e.g., here, “6 pm” is marked as the
slot time. An ontology, which describes the scope of semantics that the dialog system
can process, is defined by the collection of slots and the values that each slot can take. A
widely used practice for slot filling is to introduce IOB tags [3] and assign a label to each
token in the utterance. A label, e.g., B-time, is a combination of the slot name and one of
the IOB tags.These labels are then used to identify the values for different slots from the
utterance. In this manner, slot filling is treated as a sequence labeling task, as illustrated
in Figure 1, for which the two dominant classes of methods are based on recurrent neural
networks (RNNs) [1] and conditional random fields (CRFs) [4], respectively. This practice
has been widely employed for slot filling [2,5] and many other similar sequence labeling
problems [6]. However, this practice suffers from two drawbacks.

First, currently, most slot-filling methods are unable to predict new labels for unseen
slots. The ontology is usually pre-defined and fixed. It is difficult to accommodate new
semantic concepts (slots) in slot filling. However, users may often add new semantic
concepts in a domain and dialog systems are expected to work across an increasingly wide
range of domains. Thus, it is highly desirable for slot-filling models to be able to handle
new slots, whether in-domain or cross-domain, with the least expense being incurred after
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training on a certain domain. In this paper, we are interested in developing such open-
ontology slot filling, which means that the collection of slots and values is open-ended for
slot filling. Second, in current slot-filling models [5,7], slot labels are generally encoded
as one-hot vectors. However, slot labels are not merely discrete classes. There are natural
language descriptions for each slot, e.g., the description “number of people” for the slot
#people. This one-hot encoding ignores the semantic meanings and relations for slots,
which are implicit in their natural language descriptions and useful for slot filling.

Utterance 6 pm for the movie called avatar

Slot labels B-time I-time O O O O B-movie

Figure 1. An example of slot filling in the movie domain.

There are prior efforts to address the above two drawbacks. The difficulty of trans-
ferring between domains could be partly alleviated with multi-task learning [8–10], by
performing joint learning on multiple domains. Practically, varying only the last output
layer for different domains and sharing the parameters of the rest layers has shown to be a
successful approach [11]. In this approach, the slot-filling model can leverage all available
multi-domain data and transfer them to handle those slots with sparse training data. How-
ever, basically, this multi-task learning approach is unable to predict labels for zero-shot
slots (namely those slots that are unseen in training data and whose values are unknown).
It can be seen that this difficulty is also related to the drawback of one-hot encoding slot
labels, which hinders the exploitation of semantic relations and shared statistical proper-
ties between different slots. A recent work [12] proposes utilizing slot label descriptions
towards zero-shot slot filling by introducing slot encodings from natural language descrip-
tions. Basically, they use RNN-based sequence labeling, taking the slot encoding vector as
an additional conditional input and outputting the IOB tags in each position. Sequence
labeling is carried out independently for all slots. Though yielding promising results,
there are two shortcomings. First, independent sequence labeling may make conflicting
predictions. Second, interactions between slots are ignored in sequence labeling.

CRFs have been shown to be one of the most successful approaches for sequence
labeling, especially for capturing the interactions between labels. A widely used method
is to implement a CRF layer on top of features generated by a RNN [1]. These recent
neural CRFs are different from conventional CRFs, which mainly use discrete indicator
features. However, these recent CRFs still work with a closed set of labels. In this paper,
we propose a novel neural CRF model, called elastic CRF (eCRF), for open-set sequence
labeling, by leveraging label descriptions inspired from [12]. The key idea of eCRFs is to
use slot descriptions to create semantically meaningful IOB tags [3], which are further used
for a new calculation of potential functions in the CRF framework. Compared to traditional
fixed IOB tags in original CRFs, our eCRFs are able to process new slots unseen during
training without retraining the model. Such flexibility is the motivation for calling it an
“elastic” CRF model.

The eCRFs are powerful models for open-ontology slot filling. Intuitively, the node po-
tentials of eCRFs combine the neural features of both the utterance and the slot descriptions,
and the edge potentials model the interactions between different slots. In the experiments,
we make use of the Google simulated dataset [13], and re-split the dataset according to
the in-domain task and the cross-domain task, which focus on the challenge of handling
unseen values and unseen slots, respectively. The results show that eCRFs significantly
outperform not only a BiLSTM baseline but also the concept tagger (CT) in [12] for both
tasks, especially in predictions of unseen slots and values.

In Section 2, we discuss related work. The new eCRF model is detailed in Section 3.
Section 4 describes the dataset and task formulations. Section 5 presents the experiments,
followed by the conclusion in Section 6.
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2. Related Work

One line of related work is zero-shot slot-filling learning [14]. The term open ontology
referred in this paper is a different name for zero-shot slot filling in spoken language
understanding (SLU) for dialog systems. Zero-shot learning has been applied in various of
SLU tasks. The authors of [15] leverage the intent embeddings to detect new intent labels
which are not included in the training data. Additionally, ref. [12] exploits the slot label
descriptions to parse the novel semantic frames for domain scaling and [16] extends the
natural language generation module to generalize the responses into an unseen domain via
latent action matching. The authors of [17] propose utilizing both the slot description and a
small number of examples of slot values to enhance model robustness. In [18], the authors
focus on multi-turn zero-shot slot filling in conversation. These studies have utilized the
natural language descriptions of the labels, and by constructing the semantic encoder
to take the label descriptions as inputs, any new labels in the testing phrase can still be
predicted by the model. Our eCRFs also use this semantic encoder structure. However,
unlike processing each label description separately in [12], eCRFs are trained and tested
by jointly exploiting all possible slot descriptions at one time. Thus, they could capture
relations between slot labels and relieve the burden of adjusting the oversampling ratio.

Another line of related work is models for slot filling. CRFs have been extensively
applied in traditional slot-filling tasks [19,20], but are restricted by a fixed set of labels.
With the progress of deep learning, state-of-art slot-filling methods usually utilize BiL-
STM networks [9,21,22]. Extended models, such as encoder–decoder [5] and memory
network [23] designs, are explored. More recently, ref. [24] proposes a coarse-to-fine
approach (Coach) for cross-domain slot filling, which detects the value span boundary
first and then predicts the specific fine types for the slot entities. With the advance of pre-
trained models [25], there are also many work [26–28] that adapt the well-studied machine
reading comprehension (MRC) framework to solve open-ontology slot filling. Motivated
by the BiLSTM-CRF architecture [19,29,30], our eCRFs combine the representation power
of deep neural networks and dependency modeling ability of CRFs, together with a newly
designed potential function.

3. Proposed Model

Our new model presents an extension from existing neural CRFs [29,30]. Existing
neural CRFs in many other sequence labeling tasks are restricted by a fixed set of labels, e.g.,
PERSON, LOCATION, ORGANIZATION, MISC in the name entity recognition (NER) task,
and thus can not be applied for open-ontology slot filling. To overcome this shortcoming,
we propose a novel framework called elastic conditional random field (eCRF), which
consists of three parts. (1) A slot description encoder is employed to encode the slot
descriptions into semantic embeddings, then (2) a BiLSTM is used to extract contextual
neural features, and finally (3) the outputs of both the slot description encoder and the
BiLSTM are combined to define a novel potential function in the CRF. The main framework
of eCRF is illustrated in Figure 2 and each part is detailed in the following subsections.

Slot 
description 

encoder

6             pm          for          the       movie     called     avatar

⨁ ⨁ ⨁ ⨁ ⨁ ⨁⨁

Emedding
layer

User utterance

BiLSTM

Slot labels

Contextual 
features

description

‘O’

‘B’  +  ‘time for movie’ 

‘I’   +  ‘time for movie’ 

‘B’  +  ‘movie name’ 

‘I’   +  ‘movie name’ 

…

index

0

1

2

3

4

…

1 2 0 0 0 0 3 ⨁ Concatenation

Figure 2. The architecture of the elastic CRF (eCRF) model.
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3.1. Slot Description Encoder

Let X = (x1, x2, ..., xn) denote the input user utterance and Di = (di
1, di

2, ...) denote
the description of slot si. In our experiment, slot descriptions are simple complemen-
tary phrases, e.g., ‘number of people’ for the slot #people, ‘theatre name’ for the slot
theatre_name, but other richer expression can be used. The goal of our task is to find
all possible text spans in X as values for each si. We adapted the IOB tagging scheme as
in [3]. Traditionally, the IOB tags are made up three type, ‘B’, ‘I’, and ‘O’, which indicate
the beginning position of a value span, the intermediate and ending positions of the value
span and the rest position belonging to no values. To be specific, if a word is predicted to
have the ‘B’ tag or multiple words are predicted to have ‘B, I, .., I’ tags, the word span is
the value of a slot. Instead of using a combination of the slot name and one of the IOB tags
as in Figure 1, we used the combination of the slot description and one of the IOB tags in
order to leverage the semantic meanings of slots. As shown in Figure 2, the slot description
encoder takes all slot descriptions as input, and outputs are distributed representations for
all possible combinations of the IOB tags and the slot descriptions, such as ‘O’, ‘B + D1’,
‘I + D1’, ‘B + D2’, ‘I + D2’, .... The set of these new combined slot labels is denoted as S .
We use indexes of these labels to suggest the corresponding positions within the utterance.
For example, in Figure 2, ‘6’, ‘pm’ and ‘avatar’ are predicted as the positions of ‘B+ time
for movie’, ‘I+ time for movie’ and ‘B+ movie name’, which means that ‘6 pm’ is the value
of slot movie_time and ‘avatar’ is the value of slot movie_name. A function e(·) ∈ Rd is
used to denote the output vector from the slot description encoder as follows:

e(B + Di) = FC
(

f (Di)⊕ emb(B)
)

(1)

e(I + Di) = FC
(

f (Di)⊕ emb(I)
)

(2)

e(O) = FC
(−→

0 ⊕ emb(O)
)

(3)

where FC(·) denotes a one-hidden-layer fully connected network and f (·) denotes an
encoder that maps the descriptions into semantic embeddings. In this paper, we use a
simple averaging function of all word embeddings in Di as in [12]. emb(·) is an embedding
lookup function for the IOB tags and ⊕ denotes the concatenation operation. Note that for
e(O), we use a zero vector

−→
0 with the same size as the output vector of f (·) since the ‘O’

tag should be independent of any Di. A difference between our slot description encoder
and that in [12] is that we leverage the embeddings of the IOB tags so that the dependencies
between tags in different slot labels are modeled.

3.2. BiLSTM Feature Extractor

Bidirectional long short-term memory (BiLSTM) has been widely utilized in sequence
models to capture the contextual semantic feature of input sentences [19,29]. In eCRF, we
also exploit BiLSTMs to extract the contextual neural features. Through concatenating
the hidden states from both forward and backward passes, we acquire the distributed
representations of contextual features H = (h1, h2, ...hn), in which each hi ∈ Rd.

3.3. Elastic CRF (eCRF) Labeler

Let Y = (y1, y2, ...yn) denote the output sequence of slot labels, where yi ∈ S . Then
the potential function of our elastic neural CRF is defined as follows:

Ψ(Y, W) =
n

∑
i=1

e(yi)
Thi +

n−1

∑
i=1

e(yi)
TWe(yi+1) (4)

where W ∈ Rd×d is a learnable matrix. The potential function consists of two items. The
first term, called the node potential, calculates semantic similarity of the slot descriptions
and the extracted contextual features. The second term, called the edge potential, captures
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interactions between the slot labels through a bilinear calculation. Then, the likelihood of
eCRF is defined as follows:

p(Y|X, D) =
exp(Ψ(Y, X))

∑Y′ exp(Ψ(Y′, X))
(5)

The eCRF is trained by conditional maximum likelihood (CML), and we used Viterbi
decoding for inferences as follows:

Ŷ = argmax
y′1,...,y′n∈S

p(y′1, ..., y′n|X, D) (6)

In our experiment, we employed the pre-train trick [31] to speed up model learning.
Namely, we first masked the edge potential term and trained only with the node potential
term for a certain number of training steps, and then added the edge potentials in training.
More details can be found in Section 5.2.

4. Dataset and Tasks

In the experiments, we used the recent Google simulated dataset (accessed from https:
//github.com/google-research-datasets/simulated-dialogue on 1 June 2018) as our main
dataset. It is collected by the machines talking to machines (M2M) self-play schema [13]. Two
domains, restaurant and movie, were chosen. There are two common slots, i.e., time and
date, in both domains, and an around 40% out-of-vocabulary (OOV) rate in the test sets.
However, since this dataset was not originally built for the open-ontology slot filling, the
number of unseen values in the testing set is very limited. In order to properly use this dataset
for the study, we designed two different tasks, the in-domain task and the cross-domain task,
and accordingly re-split the whole dataset into new training and testing sets.

In the in-domain task, we aimed to evaluate various models for handling unknown
values given all known slots. For each domain, we re-split the whole dataset by fixing the
ratio between the number of types of values in training and testing. Suppose the sets of
all values occurred in the training set and testing set are Vtrain and Vtest, respectively; we
defined the value ratio between training and testing as |Vtrain| : |Vtest −Vtrain|. Three value
ratios were chosen for model evaluations, that is, 75:25, 50:50 and 25:75.

For the cross-domain task, we aimed to evaluate various models for handling un-
known slots. Similar to the zero-shot multi-domain learning [12], we trained the model on
one domain and evaluated it on the other domain. The common slots of the two domains
are treated as known slots while the other slots were treated as unknown slots.

After determining the training and testing sets, a validation set is randomly extracted
from the training set, satisfying two conditions: (1) the ratio between the total number
of utterances in the new training set and validation set is 4:1, and (2) around 50% of the
validation set contains unseen slots or values with respect to the new training set. In this
way, a reasonable validation set is constructed so that model training can be monitored for
stopping for open-ontology prediction.

5. Experiments
5.1. Baselines

In this paper, we compare our eCRF model with the concept tagging model proposed
in [12] and a simple BiLSTM-based tagging model.

As shown in Figure 3, the Concept tagging (CT) model employs a slot description
encoder that takes the slot descriptions as input without the IOB tags. A one-layer BiLSTM
is used to extract the contextual features of user utterances. The contextual features and the
description encoder outputs are concatenated and sent to a feedforward neural network
(FNN). This is followed by another one-layer BiLSTM. Finally, a softmax layer is used to
calculate the distribution over slot labels. Since the slot descriptions are already used as
conditional inputs, the output slot label set only consists of three labels, i.e., ‘I’, ‘B’, ‘O’. In

 https://github.com/google-research-datasets/simulated-dialogue
 https://github.com/google-research-datasets/simulated-dialogue
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both training and testing, the descriptions of each slot are iteratively fed into the model
and evaluated separately.

Slot 
Description 

encoder

6             pm          for          the       movie     called     avatar

‘time for movie’

⨁

⨁ ⨁ ⨁ ⨁ ⨁ ⨁

⨁ ⨁

⨁

⨁ ⨁ ⨁ ⨁

Emedding
layer

User utterance

BiLSTM 1

BiLSTM 2

FNN

Softmax
output layer

Slot labels B I O O O O O

Figure 3. The architecture of the concept Tagging (CT) model [12].

The BiLSTM tagging (BT) model is a simplified version of the CT model, created by
removing the second BiLSTM layer. As shown in the following experimental results, this
second BiLSTM layer plays an important role in transforming the contextual features and
slot label features, which largely improves the performance.

5.2. Experimental Setup

In our experiment, the vocabulary size is 1264. We use the open tool ( accessed from
https://github.com/stanfordnlp/GloVe on 25 October 2015) to train the GloVe embeddings
on the whole dataset. The dimension of all word embeddings and the IOB tags are set
as 50. The concatenated hidden size of all BiLSTMs are set as 100. The FNNs in the CT
and BT models consist of one hidden layer with 100 units. For the pre-training of eCRFs,
the edge potential is added in training after 2000 steps. All models are trained with the
Adam [32] optimization method with a learning rate of 0.001. Early-stopping is employed
on the validation set to prevent over-fitting. For both the CT and BT models, we leveraged
oversampling, which sets the ratio of positive and negative samples as 1:1 and trains the
model with a minibatch size of 10. For eCRFs, we set the minibatch size as 1. All the codes
were implemented with Tensorflow [33].

5.3. In-Domain Task Results

As described in Section 4, for the in-domain tasks, we re-organized the whole dataset
into three different new datasets with increasing prediction difficulties, by setting the value
ratios between training and testing as 75:25, 50:50 and 25:75. Table 1 shows the average
exact-matching accuracies for known values, unknown values, and total values on the
testing set for each model.

Table 1. Results for the in-domain tasks: average exact matching accuracies for known values, unknown values and total
values for three models. Models are BiLISM tagging (BT) model, concept tagging (CT) model [12] and elastic CRF (eCRF).
Sim-R and sim-M are the domains of restaurant and movie respectively. For each domain, three ratios between the number
of types of values in training and testing are chosen to re-split the whole dataset to train models. Bold numbers mean the
best results among three compared models.

Domain Value-Ratio Average Accuracy for Known Values Average Accuracy for Unknown Values Average Accuracy for Total Values

Train: Test BT CT eCRF BT CT eCRF BT CT eCRF

sim-R

75:25 0.959 ± 0.020 0.993 ± 0.005 0.982 ± 0.007 0.555± 0.122 0.753± 0.108 0.791± 0.047 0.765± 0.069 0.862± 0.060 0.875± 0.026

50:50 0.968± 0.017 0.994± 0.002 0.984± 0.011 0.361± 0.083 0.474± 0.066 0.618± 0.058 0.639± 0.048 0.677± 0.042 0.754± 0.035

25:75 0.967± 0.041 0.999± 0.001 0.985± 0.009 0.365± 0.034 0.441± 0.035 0.516± 0.036 0.554± 0.016 0.575± 0.030 0.624± 0.027

sim-M

75:25 0.951± 0.034 0.982± 0.005 0.984± 0.003 0.843± 0.009 0.876± 0.066 0.905± 0.011 0.914± 0.018 0.930± 0.037 0.953± 0.005

50:50 0.941± 0.028 0.982± 0.009 0.975± 0.017 0.655± 0.024 0.723± 0.076 0.841± 0.024 0.803± 0.014 0.840± 0.040 0.910± 0.017

25:75 0.948± 0.024 0.991± 0.003 0.988± 0.005 0.519± 0.034 0.611± 0.030 0.682± 0.035 0.662± 0.027 0.718± 0.021 0.784± 0.023

https://github.com/stanfordnlp/GloVe
https://github.com/stanfordnlp/GloVe
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The results demonstrate that eCRFs clearly outperform the BT models in all conditions.
Though slightly worse than the CT models on known values, eCRFs achieve much better
results than the CT models in terms of accuracies for unknown values. And the superiority
becomes larger as the value-ratio in testing set becomes higher. Therefore, in terms of
accuracies for total values, eCRFs achieve the best overall performances.

5.4. Cross-Domain Task Results

For the cross-domain tasks, we train models on one domain and test on the other. The
common slots such as time, date are treated as known slots while the rest as unknown
slots, such as theatre_name, restaurant_name. The evaluation metrics are the average
exact-matching accuracies for values from known slots, unknown slots and total slots on
the target domain. As shown in Table 2, eCRFs outperform other models in all conditions.
In the cross-domain tasks, although there are some overlapping between the known slots
on the two domains, the user utterances are different in expressing those slots and values.
These results demonstrate that our eCRFs have greater generalization ability.

Table 2. Results for the cross-domain tasks: average exact matching accuracies for values from known slots, unknown slots
and total slots on test domain for three models. Bold numbers mean the best results among three compared models.

Train Test Average Accuracy for Known Slots Average Accuracy for Unknown Slots Average Accuracy for Total Slots

Domain Domain BT CT eCRF BT CT eCRF BT CT eCRF

sim-M sim-R 0.980± 0.025 0.974± 0.009 0.988± 0.004 0.136± 0.045 0.121± 0.077 0.243± 0.009 0.502± 0.036 0.491± 0.044 0.566± 0.007

sim-R sim-M 0.814± 0.064 0.915± 0.013 0.926± 0.024 0.165± 0.040 0.246± 0.017 0.377± 0.031 0.508± 0.035 0.599± 0.006 0.667± 0.020

Figures 4–6 show the prediction results for the same utterance on the movie domain
with the eCRF and CT models. Figure 4 illustrates the predicted scores with only node
potentials for eCRFs, while Figure 5 gives the predicted scores with both node and edge po-
tentials. It can be seen that the boundaries of slot labels for some slots are mistakenly placed
in Figure 4, e.g., the value “lincoln square cinemas" for the unknown slot theatre_name is
falsely predicted as two values “lincoln" and “square cinemas". When taking both node
and edge potentials into account, correct predictions are obtained for all the three slots, as
shown in Figure 5. The output probabilities of slot labels for the CT model are shown in
Figure 6. Although the CT model gives the right prediction for the known slot date and un-
known slot #tickets, it mistakenly predicts the value for the unknown slot theatre_name
as “lincoln square", as it fails to learn the semantic relations between slot labels.

i would like 2 tickets for lincoln square cinemas tomorrow

O
B-#tickets
I-#tickets

B-theatre_name
I-theatre_name

B-date
I-date

Figure 4. Potential scores with only node potentials in eCRFs for the cross-domain task. The darker
the color, the higher the potential score.
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i would like 2 tickets for lincoln square cinemas tomorrow

O
B-#tickets
I-#tickets

B-theatre_name
I-theatre_name

B-date
I-date

Figure 5. Potential scores with both node and edge potentials in eCRFs for the cross-domain task.

i would like 2 tickets for lincoln square cinemas tomorrow

O (#tickets)
B (#tickets)
I (#tickets)

O (theatre_name)
B (theatre_name)
I (theatre_name)

O (date)
B (date)
I (date)

Figure 6. Probabilities of the IOB labels for each slot in the CT model.

6. Conclusions

In this paper, we propose a novel model, the elastic conditional random field (eCRF),
for open-ontology slot-filling task. The natural language descriptions of slots and (user)
utterances are encoded into the same semantic embedding space to implement the node
and edge potentials. We recompose the Google simulated dataset and demonstrate that
eCRFs achieve better performances in both in-domain tasks and cross-domain tasks than
existing models.

There are interesting future works to further enhance the parsing ability and adapta-
tion capacity of eCRFs: (1) encoding the descriptions of more semantic labels including
the intent labels, domain labels and action labels for better generalization and (2) upgrad-
ing the CRF architecture with a slot label language model that can capture long-range
dependencies between labels.
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the manuscript.
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