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Abstract

Recently, two categories of linguistic knowledge sources, word
definitions from monolingual dictionaries and linguistic rela-
tions (e.g. synonymy and antonymy), have been leveraged sep-
arately to improve the traditional co-occurrence based methods
for learning word embeddings. In this paper, we investigate
to leverage these two kinds of resources together. Specifically,
we propose a new method for word embedding specialization,
named Definition Autoencoder with Semantic Injection (DASI).
In our experiments1, DASI outperforms its single-knowledge-
source counterparts on two semantic similarity benchmarks,
and the improvements are further justified on a downstream task
of dialog state tracking. We also show that DASI is superior
over simple combinations of existing methods in incorporating
the two knowledge sources.
Index Terms: word embedding specialization, word defini-
tions, semantic injection, dialog state tracking

1. Introduction
Distributed representations of words, also known as word em-
beddings, have been successfully used in many natural lan-
guage processing (NLP) tasks [1, 2]. More recently, contex-
tualized embeddings like ELMO [3] or BERT [4] have been
proposed, which are dynamically created based on a whole sen-
tence. Though with improved performance in some NLP tasks,
they suffer from large storage/time complexity in inference and
may not be suitable to word-level tasks such as word similarity
evaluations. Under these considerations, word embeddings still
have their own significance in applications.

Traditional methods of learning word embeddings over un-
labeled textual corpora are mainly based on the distributional
hypothesis [5], which states that words occuring in similar con-
texts tend to be semantically close. These co-occurrence based
methods are good at capturing relatedness between words, but
usually lack in capturing similarity and distinguishing similar-
ity from relatedness [6]. For example, “cup” and “coffee” often
appear together - they are related but not similar. This draw-
back can hurt the performance of downstream language under-
standing tasks such as dialog state tracking [7], which aims at
tracking users’ preference over semantic slots expressed in user
utterances, as shown in Table 1.

This weakness of the co-occurrence based methods can be
alleviated by introducing linguistic supervision in the learning
process. Two classes of external semantic knowledge sources
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tion and China Mobile joint funding MCM20170301. † Corresponding
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1The code is available at https://github.com/thu-spmi/DASI.

Restaurant price range
Slot value Synonyms

cheap cheaper, inexpensive, bargain, ...
moderate mid-price, affordable, medium, ...
expensive costly, pricy, dear, ...

Table 1: Examples of different expressions of users’ preference
over restaurant price ranges. Language understanding models
need to classify synonymous expressions into the correct class
(slot value) and distinguish antonymous ones such as “cheap”
and “expensive”.

have been leveraged separately. First, word definitions in mono-
lingual dictionaries, which contain semantic descriptions about
words, are used to enhance the learning of word embeddings,
especially for capturing similarity between words [8, 9, 10].
Second, distributional word vectors can be refined by injecting
semantic relations (e.g. synonymy and antonymy) from lexical
resources such as WordNet [11] and Paraphrase Database [12],
as shown in [13, 14, 15, 16]. We term this process semantic
injection.

However, for learning with dictionary definitions or with
semantic injection, either alone has its own limitation. For
learning with dictionary definitions alone, semantic relations
between words are not explicitly enforced in learning word em-
beddings, since a word’s synonyms and antonyms do not always
appeared in its definition. For learning with semantic injection
alone, although semantic relations are directly injected, the de-
scriptive information contained in dictionary definitions are not
exploited. For example, the phrase “charging low prices” in the
definition of word “cheap” clearly carries useful information for
capturing similarity between words.

In this paper, we propose a new method for word em-
bedding post-processing that specializes in similarity relation,
named Definition Autoencoder with Semantic Injection (DASI),
which leverages both knowledge sources. The connection and
comparison of DASI with existing methods are detailed in
Section 2. Two state-of-the-art specialization methods, the
ATTRACT-REPEL (A-R) [16] and Consistency Penalized Au-
toEncoder (CPAE) [10], are used as the baselines of semantic
injection and definition modeling respectively. It is found in
our experiments that DASI outperforms its single-knowledge-
source counterparts in three different vector spaces on two
word similarity benchmarks: SimLex-999 [6] and SimVerb-
3500 [17]. Furthermore, DASI improves the downstream di-
alog state tracking (DST) performance over two different DST
models.

2. Related Work
Table 2 shows a brief review of existing methods for learn-
ing word embeddings, depending on the used external semantic
knowledge sources. To the best of our knowledge, this paper
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External Semantic Injection
Resource × X

Word
Definitions

×
word2vec [19]

GloVe [20]
fastText [21]

retrofitting [13]
PARAGRAM [14]
counter-fitting [15]

ATTRACT-REPEL [16]

X
Lexicographic [8]

DASI (ours)dict2vec [9]
CPAE [10]

Table 2: Categorization of different word embedding learning
methods according to the use of external linguistic resources.

represents the first exploration in incorporating both word defi-
nitions and semantic injection for word representation learning.

2.1. Learning with Word Definitions

There are two main ways to learn with word definitions. One is
to use word definitions as an additional co-occurrence context
[8, 9]. The other is to learn definition embeddings which can
be used to generate or reconstruct the original word definitions
[18, 10]. Our approach is similar to the latter in the spirit of
using definition reconstruction to incorporate dictionary knowl-
edge. Specifically, inspired from CPAE [10], DASI consists of
encoding the sequence of words in a definition into a vector
and trying to reconstruct/decode the definition. A consistency
penalty is used to enforce that the input word embeddings it uses
as inputs and the definition embeddings it produces as outputs
are close to each other, as a result of the inherent recursivity of
dictionaries. However, there are two important differences be-
tween DASI and CPAE, as will be detailed in Section 3.1 with
experimental comparison in Section 5.

2.2. Learning with Semantic Injection

Semantic relations in semantic lexicons such as WordNet [11]
and Paraphrase Database (PPDB) [12] have been shown to be
useful in fine-tuning and specializing pre-trained word embed-
dings to better capture word similarity [13, 14, 15, 16]. Specifi-
cally, retrofitting [13] brings the vectors of semantically similar
words close together. PARAGRAM [14] injects paraphrasing
constraints from PPDB to the original skip-gram objective func-
tion [19] to fine-tune the word vectors. Counter-fitting [15] and
ATTRACT-REPEL [16] leverage both synonymy and antonymy
constraints as semantic injection sources, and use a hinge loss
to pull synonymy pairs closer and push antonymy pairs away to
reach the pre-defined similarity margin.

In DASI, we also use synonymy and antonymy constraints
but with a different objective function so that we can naturally
combine word definition modeling and semantic injection. In
particular, synonyms are attracted by increasing the conditional
likelihood of its synonyms for a given word, and antonyms are
repelled in the opposite way (decreasing the conditional likeli-
hood). This difference is detailed in Section 3.2 with experi-
mental comparison in Section 5.

3. Definition Autoencoder with Semantic
Injection

Denote by ew the target embedding for word w, which is ini-
tially in a pre-trained word vector space (e.g. word2vec [19]).
Suppose that we have access to a dictionary consisting of word
definitions and a semantic lexicon consisting of synonyms and
antonyms pairs.
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Figure 1: Overview of the DASI model.

• Denote byD the set of the words which have definitions.
Let Dw = {Dw,t, t = 1, · · · , |Dw|} be the concate-
nated sequence of words from all the definitions for a
word w ∈ D, since a word may have multiple senses in
the dictionary2. Denote by E , {w′|w′ ∈ Dw, w ∈ D}
the set of words that are used to define words in D.

• Denote byM the set of the words which have synonyms
and/or antonyms. Let Sw andAw be the set of synonyms
and antonyms of word w ∈M respectively.

Let eE , eE∪D and eM denote the embeddings of words in the
corresponding set of words respectively. Let V , D ∪ E ∪M
be the total vocabulary. Then we can improve {ew|w ∈ V},
by leveraging both the word definitions and the synonyms and
antonyms, via DASI as shown in Fig.1.

3.1. Definition Modeling

Word definitions are incorporated by using an autoencoder
model inspired from CAPE. For w ∈ D, an LSTM based en-
coder runs over the word sequenceDw , where the words inDw
are represented by their target embeddings we want to improve.
Then we apply a linear transformation to the last hidden state
of LSTM to obtain the definition embedding dw that is of the
same dimension as ew :

dw = fθ(Dw) =W · LSTM(Dw) + b

where θ denotes the encoder parameters, consisting of the
LSTM parameters, and {W, b}. A skip-gram based decoder,
which treats Dw as a bag-of-words, is introduced to define a
reconstruction loss J1:

J1(eE , θ, φ) = −
∑
w∈D

|Dw|∑
t=1

log qφ(Dw,t|dw)

Here qφ(·|·) denotes the skip-gram probability, which can be
generally defined for word u ∈ V appearing in the context of
word w ∈ D:

log qφ(u|dw) = log
exp(WT

u dw + bu)∑
k∈V exp(W

T
k dw + bk)

(1)

where Wk and bk denote the weight and bias for word k ∈ V ,
and φ denotes the decoder parameter {Wk, bk|k ∈ V}.

2With abuse of notation, Dw may also represent the set of words in
the sequence Dw in this paper. |Dw| denotes the length/size.
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To incorporate the definition information compressed in dw
into ew, we borrow the consistency penalty in [10], which is to
make ew and dw be close to each other :

J2(eD∪E , θ) =
∑
w∈D

dist(ew, dw)

where dist is a distance measurement and we choose the Eu-
clidean distance in our experiment.

DASI draws inspiration from CPAE, but differs from CPAE
in two important ways. First, DASI aims to improve the tar-
get embeddings, by feeding them into the LSTM and enforc-
ing reconstruction and consistency to fine-tune the target em-
beddings. In contrast, CPAE adopts the definition embedding
from the LSTM output as the target embedding, after training
the LSTM from scratch. Fine-tuning is much faster than learn-
ing from scratch, and has the advantage of only making neces-
sary changes to pre-trained vectors. Section 5 further provides
experimental validation. Second, apart from used in definition
decoding, we propose to use the skip-gram model to do seman-
tic injection in DASI, which naturally integrates two knowledge
sources and is found to be superior to other simple combinations
of existing methods as shown in our experiments.

3.2. Semantic Injection
We inject the semantic relation constraint by increasing the con-
ditional log-probability of synonyms and decreasing the condi-
tional log-probability of antonyms for w ∈M as follows:

J3(eM, φ) = −
∑
w∈M

∑
s∈Sw

log qφ(s|ew)−
∑
a∈Aw

log qφ(a|ew)


Here we propose to reuse the skip-gram model qφ(·|·) in Eq. (1)
to calculate the probability of synonyms/antonyms appearing in
the context of word w, since ew and dw are of the same di-
mension. The semantic injection penalty pulls the defined word
embedding ew close to the embedding of synonyms es where
s ∈ Sw, and pushes ew away from the embedding of antonyms
ea where a ∈ Aw. The motivation of reusing the skip-gram de-
coder for semantic injection is to incorporate word definitions
and semantic relations in a consistent manner.

The overall objective function is given by the weighted sum
of the three losses described above:

J(eV , θ, φ) = J1(eE , θ, φ) + αJ2(eD∪E , θ) + βJ3(eM, φ)

whereα and β are hyperparamters to control the balance of each
loss.

4. Experiments
We compare the proposed method with two state-of-the-art
models, CPAE [10] and ATTRACT-REPEL (shortened as A-
R) [16], using either word definitions or semantic relations. We
conduct experiments for both intrinsic and downstream evalua-
tions. Details of training and evaluation settings are described
as follows.

4.1. Training Settings

We use word definitions and semantic relations in WordNet
[11]. WordNet is a large human-constructed semantic lexicon
for English words. It groups words into sets of synonyms called
synsets, provides their definitions, and records the various se-
mantic relations between synsets. There are 117,597 synsets
and 207,016 semantic relation pairs. We use the definitions in
WordNet as the resource of dictionary definitions, and the an-
notated synonymy and antonymy as the resource of semantic

Pre-trained Specialization Similarity Scores
Embedding Method SV-dev SV-test SL

word2vec

- 39.20 35.78 44.09
A-R 59.60 54.61 65.87

CPAE 44.59 41.73 44.63
DASI 63.77 60.75 67.59

GloVe

- 26.92 22.20 36.89
A-R 51.46 44.48 59.88

CPAE 35.13 28.68 40.20
DASI 59.56 54.88 64.03

Paragram-SL999

- 52.80 54.21 68.41
A-R 60.57 60.02 72.99

CPAE 60.63 58.35 68.12
DASI 66.81 65.54 73.95

Table 3: Results of different post-processing methods for three
kinds of embeddings on SimVerb-3500 (SV) and SimLex-999
(SL). Best results are in bold.

injection to train our models. For words that have more than
one sense (included in more than one synsets in WordNet), their
definitions are the concatenation of definitions in all senses and
the synonym set and antonym set are also the union of each in
all senses respectively.

We use three kinds of pre-trained word embeddings in our
experiments. The word2vec3 [19] and GloVe 4 [20] which
are distributed word vectors trained on large text corpus, and
Paragram-SL999 5 [14] which is a specialization of word2vec
using the Paraphrase Database [12]. All of the embeddings are
300 dimensions.

The implementations of CPAE and ATTREP-REPEL are
based on the open-source code of the corresponding papers. We
use a batch size of 256 and employ the Adam optimizer for all
the methods. For DASI, we set α = 25, β = 1.0 and use a
learning rate of 0.001. We set λ = 32 and a learning rate of
0.001 for CPAE and δsim = 1.0, δant = 0.0, λreg = 10−9

and a learning rate of 0.05 for ATTRACT-REPEL. All the hy-
perparameters are chosen by grid search. We use the standard
development set of SimVerb-3500 [17] for validation check, and
training early stops when no improvement is observed within
100 updating steps. The model with the best validation score is
used for intrinsic and downstream evaluations. The vocabulary
size is 20,000 in our experiments, which includes almost all the
words in the word similarity benchmarks and the downstream
dialog dataset.

4.2. Evaluation Settings

We conduct the intrinsic evaluation on two word similarity
datasets: SimLex-999 [6] and SimVerb-3500 [17], which con-
tain human annotated similarity ratings for 999 and 3500 word
pairs respectively. For embedding evaluation, we compute the
cosine similarity for each word vector pair and measure the
Spearman correlation ρ between predicted score ranking and
ground truth ranking.

We expect that the improvement of word similarity captur-
ing can benefit downstream tasks such as language understand-
ing, and we choose the dialog state tracking (DST) task for eval-
uation. DST aims to capture user goals, which are expressed by
slot-value pairs such as food=India or area=North, given user
utterances. The performance are measured by joint goal accu-
racy and request accuracy, which represent the proportion of
turns with all the slot-value pairs correctly classified and all the
requests correctly answered respectively.

3https://code.google.com/archive/p/word2vec/
4https://nlp.stanford.edu/projects/glove/
5https://cogcomp.org/page/resource_view/106
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Model Embedding Joint goal Request

NBT [22]

Paragram-SL999 81.94 93.52
+ A-R 83.08 93.88
+ CPAE 81.80 93.76
+ DASI 84.32 93.34

GLAD [23]

Paragram-SL999 88.71 97.11
+ A-R 86.41 96.94
+ CPAE 88.96 97.15
+ DASI 89.78 97.40

BERT-DST [24] 87.7 -
COMER [25] 88.6 -
DADST [26] 89.9 -

Table 4: Joint goal accuracy and request accuracy of two mod-
els with different input embeddings on WOZ 2.0. Paragram-
SL999 is chosen as the baseline embedding and three post-
processing methods are compared. Best results are in bold.

Method Epoch SV-dev SV-test SL
CPAE (input) 24.5 44.59 44.63 41.73
CPAE (definition) 34.6 45.56 41.72 38.76
DASI (input) 33.2 63.77 60.75 67.59
DASI (definition) 47.1 57.35 54.17 54.96

Table 5: Comparison of applying input embeddings versus def-
inition embeddings in evaluating definition autoencoder based
models. Epoch denotes the average epoch number when train-
ing early stops. Best results are in bold.

The evaluation is based on WOZ 2.0 dataset [22], which
consists of 600/200/400 dialogs in training/development/testing
sets respectively in the restaurant domain. The system is re-
quired to track user’s preference on price range, restaurant loca-
tion and food type, where many variants (southern for south,
cheaper for cheap etc.) and synonyms (costly for expensive
etc.) are used in user expressions. We use two DST models,
the Neural Belief Tracker (NBT) [22] and the Global-Locally
Self-Attentive Dialogue State Tracker (GLAD) [23]. Both of
them use fixed word embeddings as input which allows a fair
comparison among different input embeddings. We train NBT
and GLAD following their default settings.

5. Results and Analysis
We report the Spearman’s correlation coefficient ρ×100 on
SimVerb-3500 and SimLex-999 datasets as metric of word sim-
ilarity capturing. A-R in the tables denotes the shortcut of
ATTRACT-REPEL. All the scores in each table are the average
of 5 runs with different random seeds. Results are organized to
show three conclusions:

DASI outperforms its single-knowledge-source counter-
parts under various cases. In Table 3, it can be seen that
both pre-trained distributed embeddings (word2vec and GloVe)
and specialized embeddings (Paragram-SL999) are improved
through injecting external linguistic knowledge. We find that
DASI significantly outperforms CPAE and ATTRACT-REPEL
in all cases, which shows that word definitions and seman-
tic relations can work together and make a further improve-
ment of embedding qualities. For downstream evaluation,
we only report the results of Paragram-SL999 with different
post-processing methods since they are better than results of
word2vec and GloVe. As shown in Table 4, the significant in-
crease of joint goal accuracy indicates that better capturing of
word similarities benefits the tracking of user goals. Compared
to state-of-the-art BERT-based models where the BERTbase [4]
model (110M parameters) is used to produce contextualized

Method SV-dev SV-test SL
original 39.20 35.78 44.09
aA-R→ CPAE 59.31 54.45 65.74
bCPAE→ A-R 59.67 56.53 64.17
cCPAE + A-R loss 43.01 38.90 47.14
dDASI (w/o weight tying) 62.73 60.79 66.55
DASI 63.77abcd 60.75abc 67.59abcd

Table 6: Comparison of different methods for fusing word def-
initions and semantic relations. A-R→CPAE denotes post-
processing by ATTRECT-REPEL first and CPAE later, while A-
R→CPAE the inverse. CPAE+A-R loss denotes the model that
replaces the J3 loss in DASI with the pair-wise hinge loss in
ATTRACT-REPEL. DASI without weight tying uses independent
definition decoder and semantic injection model. Superscripts
in the last line denote statistical significance (p<0.01) over the
four baselines a, b, c and d.

embeddings, GLAD with Paragram-SL999 + DASI obtains a
close joint goal accuracy with only 17M parameters in total.
The consistent improvement of DASI over multiple pre-trained
embeddings and under different DST models suggest that DASI
generalizes well.

The effect of adopting different embeddings in incorpo-
rating definition knowledge shows the superiority of DASI
over CPAE. Table 5 shows that using the input embeddings (as
proposed in DASI) rather than the output definition embeddings
from the definition autoencoder (as proposed in CPAE) has bet-
ter similarity scores and faster convergence speed. This indi-
cates that fine-tuning on the original pre-trained vectors is more
efficient than learning new vectors by adjusting the LSTM en-
coder parameters from scratch, since the model can make only
necessary changes to the pre-trained vectors.

DASI outperforms simple combinations of existing
methods in fusing both sources of external knowledge. We
compare DASI with several baseline models incorporating
knowledge from both word definitions and semantic relations.
As shown in Table 6, simultaneously utilizing multiple external
knowledge resources within a single training process outper-
forms successive utilizations. For DASI, using the skip-gram
model obtains a significant better result than directly adding the
loss of ATTRACT-REPEL to CPAE, presumably because of the
consistent manner in DASI as discussed in Section 3.2. Sharing
the parameters in the definition decoder and semantic injection
model for DASI results in better similarity scores and a more
compact model.

6. Conclusion and Future Work
This work represents a first exploration of incorporating two
kinds of external linguistic knowledge resources, the word def-
initions and semantic relations together to do specialization
of word vectors. We develop a new DASI method, which
shows significant improvement over its single-knowledge-
source counterparts on both intrinsic and downstream evalua-
tions, across various pre-trained embeddings and DST models.
We also analyze and compare different fusion approaches to
show that DASI is a better solution for knowledge fusion.

There are some interesting future works. First, since only
the words contained in dictionary or with semantic relations are
specialized in DASI, how to leverage recent progress in learn-
ing a global specialization function [27, 28] to overcome this
limitation is interesting. Second, while DASI makes use of two
external linguistic knowledge resources, other resources such as
the example sentences in dictionaries which might be helpful as
well are worthwhile to exploration.

4256



7. References
[1] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: a

simple and general method for semi-supervised learning,” in Pro-
ceedings of the 48th annual meeting of the association for compu-
tational linguistics. Association for Computational Linguistics,
2010, pp. 384–394.

[2] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. Kuksa, “Natural language processing (almost) from
scratch,” Journal of machine learning research, vol. 12, no. Aug,
pp. 2493–2537, 2011.

[3] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee, and L. Zettlemoyer, “Deep contextualized word represen-
tations,” arXiv preprint arXiv:1802.05365, 2018.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short
Papers), 2019, pp. 4171–4186.

[5] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp.
146–162, 1954.

[6] F. Hill, R. Reichart, and A. Korhonen, “Simlex-999: Evaluating
semantic models with (genuine) similarity estimation,” Computa-
tional Linguistics, vol. 41, no. 4, pp. 665–695, 2015.

[7] J. Williams, A. Raux, D. Ramachandran, and A. Black, “The dia-
log state tracking challenge,” in Proceedings of the SIGDIAL 2013
Conference, 2013, pp. 404–413.

[8] T. Wang, A. Mohamed, and G. Hirst, “Learning lexical embed-
dings with syntactic and lexicographic knowledge,” in Proceed-
ings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), vol. 2,
2015, pp. 458–463.

[9] J. Tissier, C. Gravier, and A. Habrard, “Dict2vec: Learning word
embeddings using lexical dictionaries,” in Conference on Empir-
ical Methods in Natural Language Processing (EMNLP 2017),
2017, pp. 254–263.

[10] T. Bosc and P. Vincent, “Auto-encoding dictionary definitions into
consistent word embeddings,” in Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing,
2018, pp. 1522–1532.

[11] G. A. Miller, “Wordnet: a lexical database for english,” Commu-
nications of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[12] J. Ganitkevitch, B. Van Durme, and C. Callison-Burch, “Ppdb:
The paraphrase database,” in Proceedings of the 2013 Conference
of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, 2013, pp.
758–764.

[13] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. A.
Smith, “Retrofitting word vectors to semantic lexicons,” in Pro-
ceedings of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Lan-
guage Technologies, 2015, pp. 1606–1615.

[14] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “From para-
phrase database to compositional paraphrase model and back,”
Transactions of the Association for Computational Linguistics,
vol. 3, pp. 345–358, 2015.
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[16] N. Mrkšić, I. Vulić, D. Ó. Séaghdha, I. Leviant, R. Reichart,
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